
PHYSICAL REVIEW E FEBRUARY 2000VOLUME 61, NUMBER 2
Replica field theory for a polymer in random media

Yadin Y. Goldschmidt
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

~Received 12 August 1999!

In this paper we revisit the problem of a~non-self-avoiding! polymer chain in a random medium which was
previously investigated by Edwards and Muthukumar~EM! @J. Chem. Phys.89, 2435~1988!#. As noticed by
Cates and Ball~CB! @J. Phys.~France! 49, 2009~1988!# there is a discrepancy between the predictions of the
replica calculation of EM and the expectation that in an infinite medium the quenched and annealed results
should coincide~for a chain that is free to move! and a long polymer should always collapse. CB argued that
only in a finite volume one might see a ‘‘localization transition’’~or crossover! from a stretched to a collapsed
chain in three spatial dimensions. Here we carry out the replica calculation in the presence of an additional
confining harmonic potential that mimics the effect of a finite volume. Using a variational scheme with five
variational parameters we derive analytically ford,4 the resultR;(gu ln mu)21/(42d);(g ln V)21/(42d), where
R is the radius of gyration,g is the strength of the disorder,m is the spring constant associated with the
confining potential, andV is the associated effective volume of the system. Thus the EM result is recovered
with their constant replaced by lnV as argued by CB. We see that in the strict infinite volume limit the polymer
always collapses, but for finite volume a transition from a stretched to a collapsed form might be observed as
a function of the strength of the disorder. Ford,2 and for largeV.V8;exp(g2/(22d)L (42d)/(22d)) the
annealed results are recovered andR;(Lg)1/(d22), whereL is the length of the polymer. Hence the polymer
also collapses in the largeL limit. The one-step replica symmetry breaking solution is crucial for obtaining the
above results.

PACS number~s!: 36.20.Ey, 05.40.2a, 75.10.Nr, 64.60.Cn
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I. INTRODUCTION

There has been much interest in recent years in the p
erties of polymer chains in a quenched random environm
@1–5#. This problem is directly related to that of a quantu
particle in a random medium@6,7# and to that of a flux line in
a type II superconductor in the presence of random colum
defects@8,9# as will be made clear below. Thus its gene
application makes it important for a variety of physical sit
ations.

The quantities of interest for the polymer problem are
free energy and the radius of gyration of a chain in
quenched white-noise potential. Here we consider only
case of a non-self-avoiding chain. Cates and Ball@2# gave a
beautiful intuitive argument to the effect that a Gauss
chain situated in an infinite random medium is always c
lapsed in the long-chain limit. Their argument goes as f
lows: Consider a white-noise random potentialv(x) of zero
mean whose probability distribution at each site is

P@v~x!#}g21/2exp~2v2/2g!. ~1.1!

If we now coarse-grain the medium and denote byv̄ the
average value of the potential over some region of voluma,
Then the coarse-grained potential will have the distributi

Pa~ v̄ !}~g/a!21/2exp~2av̄2/2g!. ~1.2!

Consider a polymer chain situated in the random pot
tial, and assume that it shrinks into a volumea corresponding
to a place where the mean potentialv̄ takes on a lower value
PRE 611063-651X/2000/61~2!/1729~14!/$15.00
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than usual. In this situation the free energy of the chain
crudely estimated to be~neglecting all numerical factors!:

F~a,v̄ !5L/R21L v̄1av̄2/2g. ~1.3!

HereL is the length of the chain~number of monomers!, R is
the radius of gyration~or end to end distance! and the vol-
umea is related toR via a5Rd in d-spatial dimensions. The
first term on the right-hand side~RHS! is an estimate of the
free energy of a long chain confined to a region of sizeR in
the absence of an external potential@see, e.g., Ref.@10#, Eq.
~I.12!#. The second term is just the potential energy of t
chain in the random potential of strengthv̄. The third term
arises from the chance of incurring a random potential
strengthv̄. The quantity lnP(v̄) gives an associated effectiv
entropy for the system. Minimizing this free energy ov
both v̄ and a determines the lowest free energy configu
tion. Minimizing with respect tov̄ yields v̄52Lg/a. Sub-
stituting in F gives

F~R!5
L

R2
2

L2g

2Rd
. ~1.4!

This shows that for anyd>2, F→2` as R→0. Thus the
mean size of the chain is zero, or in the presence of a cu
of a size of one monomer,

R;1, d>2. ~1.5!

For d,2, the free energy has a minimum for

R;~Lg!1/(d22) d,2, ~1.6!
1729 ©2000 The American Physical Society
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1730 PRE 61YADIN Y. GOLDSCHMIDT
which in the long chain limit (L>1/g) cuts off again atR
;1. These results are the same as those for the case
annealed potential that is able to adjust locally to lower
free energy of the system. The reason is that for an infi
system containing a finite~even though long! chain, space
can be divided into regions containing different realizatio
of the potential, and the chain can sample all of these to
an environment arbitrarily similar to that which would occ
in the annealed situation.

These results stand in contrast to the replica calculatio
Edwards and Muthukumar~EM! @1#, who found that for a
long chain

R;g21/(42d), d,4 ~1.7!

when g2/(42d)L→`, whereasR;L1/2 when g2/(42d)L→0.
Note that the result~1.7! is independent ofL as opposed to
Eq. ~1.6!. To reconcile the two apparently different resul
Cates and Ball argue that the quenched case is different
the annealed case only for the case when the medium h
finite volume V. In a finite box, arbitrarily deep potentia
minima are not present. Instead the most negativev̄ averaged
over a region of volumea!V occupied by the chain, is
approximately~keeping only leading terms in the volumeV)
given by solving the equation@the left-hand side~LHS! of
which represents the area under the tail of the distributio#

E
2`

v̄
dyPa~y!.

a

V
, ~1.8!

which yields

v̄52Ag ln V

a
. ~1.9!

This expression when plugged into Eq.~1.3! leads to@note
that the last term in Eq.~1.3! just becomes a constant ind
pendent ofR]

F~R!5
L

R2
2LAg ln V

Rd
. ~1.10!

When this free energy is minimized with respect toR it gives
rise to

R;~g ln V!21/(42d), d,4 ~1.11!

which agrees with Eq.~1.7! and also with simulations per
formed on a chain in a random medium of a fixed fin
volume @4#. However, it is not clear from this explanatio
why the replica calculation which has been done for an i
nite system@1# gives rise to the finite volume result. To she
light on this question we will show in this paper that th
reason for the discrepancy is the fact that EM used a va
tional calculation which relies on a single variational para
eter. We show specifically that the single parameter va
tional solution is inconsistent.

What we will do first is, instead of considering a syste
in a finite volume which is hard to solve, introduce an ext
nal harmonic potential~with a spring constantm). Such an
attractive potential has the effect of confining the chain t
finite distance from the origin since the energy cost to w
an
e
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-
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-
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der far away from the origin of the potential is high. A sy
tem in a harmonic potential is easier to solve than a sys
in a finite box. It also corresponds directly to the problem
a flux line in a type II superconductor where the cage pot
tial felt by a flux line due to its neighboring flux lines can b
modeled by a harmonic potential~see below!. In addition, we
introduce more variational parameters, three for the cas
replica symmetric parametrization and five for the case
replica symmetry breaking~RSB!. These extra parameter
have physical significance as will be discussed below.
will then use the replica method and the variational appro
mation to tackle the problem and obtain the free energy
the radius of gyration. For finitem we find thatR is indepen-
dent ofL ~the chain length! and as the disordered strength
increased from zero,R is decreased from its initia
m-dominated value according to the relationR
;(gu ln mu)21/(42d) @which agrees with Eq.~1.11! since the
effective volume available to a system in a harmonic pot
tial is lnV;uln mu].

On the other hand, if we try to take the ultimatem→0
limit ~which is the case originally studied by EM!, the pre-
vious solution becomes invalid and the chain collapses
d>2. For d,2 the annealed results are obtained in them
→0 limit as given above in Eqs.~1.4!,~1.5!,~1.6!. This oc-
curs specifically because of the extra variational parame
used beyond the single variational parameter used by E
We also demonstrate the importance of RSB for obtain
the correct physical results.@The relevance of RSB to this
model was recognized by Haronska and Vilgis@5#, but un-
fortunately their calculation still predicted a constant coe
cient of proportionality in the relationR;(cg)21/(42d), that
although differs from the EM result does not contain t
correct lnV dependence.#

To define the model of a polymer chain in a random p
tential plus a fixed harmonic potential we use the Gauss
chain approximation to write

H5E
0

L

duFM

2 S ]R~u!

]u D 2

1
m

2
R2~u!1V„R~u!…G , ~1.12!

whereR(u) is thed-dimensional position vector of the chai
at arc lengthu (0<u<L), m governs the strength of th
harmonic potential andV(R) is the random potential satis
fying:

^V~R!&50, ^V~R!V~R8!&5gd (d)~R2R8!. ~1.13!

We can actually consider a wider class of random poten
correlations characterized by a functionf:

^V~R!V~R8!&5gd fS ~R2R8!2

d D , ~1.14!

where f () is some given function. In Eq.~1.12! we choose
the units such thatu is dimensionless and soL is the length
of the polymer in units of the Khun bond stepb. The
‘‘mass’’ M is inversely proportional tobb2, where b
51/kBT ~in d dimensionsbM5d/b2). The caseR(0)
5R(L) corresponds to a closed chain.

The partition sum is given by the functional integral
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Z~R,R8,L,b!5E
R(0)5R

R(L)5R8DR~u!exp~2bH !. ~1.15!

We further define a boundary-free partition sum~for a closed
chain! by

Z~L,b!5E dR Z~R,R,L,b! ~1.16!

and the free energy is given by

bF52 ln Z~L,b!. ~1.17!

The correlation function of interest is

C~ l !5
1

d
^^@R~ l !2R~0!#2&&R , ~1.18!

where

1!l !L. ~1.19!

The first average in Eq.~1.18! is the thermal one with a
Boltzmann weight exp~2bH) and the second average
over the realizations of the random potential. For the ra
of l given by Eq.~1.19!, the boundary conditions on th
chain, e.g., open or closed are not important for the beha
of C(l ).

For the case of no disorder~i.e., g50) the correlation
function is given by

C0~ l !5
1

bAMm
@12exp~2l Am/M !#. ~1.20!

We see that in the limitm→0, C0(l );l /bM;(b2/d)l ,
which corresponds to pure diffusion of the chain~random
walk!. From the relation

^^R~0!2&&R5
d

bAMm
, ~1.21!

we see that the polymer chain is confined to a volume of s
V satisfying

ln V;
d

4
u ln mu, ~1.22!

for small m.
The mapping of this problem to a vortex line in an ha

monic cage potential and random columnar defects is s
that the arc-lengthu corresponds to the distancez along thec
axis ~assuming this is also the direction of the magne
field!, M→e l5e0 /g2, which is the line tension of the flux
line and g25mz /m' is the mass anisotropy.R is a two-
dimensional vector in thea-b plane of the superconducto
@8,9#. The harmonic potential plays an essential role a
reasonable approximation to the cage potential that a vo
line feels due to the repulsion by its neighbors. Thusm
'e0B/F0 whereB is the magnetic field andF0 is the flux-
oid.
e
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e
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There is also a mapping into the problem of a quant
particle in a random potential1 a harmonic potential. This
mapping reads@11,6#

b→1/\, L→b\, ~1.23!

and r(R,R8,b)5Z(R,R8,L5b\, b51/\) becomes the
density matrix of a quantum particle at inverse temperat
b. The variableu represents the Trotter~imaginary! time. In
this caseM corresponds to the mass of the particle.

II. VARIATIONAL CALCULATION

In order to average over the quenched random poten
we use the replica method. After introducingn copies of the
chain and averaging over the random potential one obta

^Zn&5E DR1•••DRn exp~2bHn!, ~2.1!

with

Hn5E
0

L

du(
a51

n FM

2 S ]Ra~u!

]u D 2

1
m

2
Ra

2~u!G
2

bg

2 E
0

L

duE
0

L

du8(
ab

d (d)@Ra~u!2Rb~u8!#.

~2.2!

Here we used the delta function potential~to make contact
with EM!, but later we will show how to generalize to
general correlation. It is useful to replace the delta funct
by the equivalent expression

d (d)@Ra~u!2Rb~u8!#5E dk

~2p!d
exp$ ik@Ra~u!2Rb~u8!#%.

~2.3!

For a general correlation@see Eq.~1.14!# we can write

f $@Ra~u!2Rb~u8!#2/d%

5E dyf ~y2/d!E dk

~2p!d

3exp~2 ik•y!exp$ ik@Ra~u!2Rb~u8!#%.

~2.4!

In order to proceed we use a quadratic variational Ham
tonian to be the best approximation toHn . This is given by

hn5E
0

L

du(
a51

n FM

2 S ]Ra~u!

]u D 2

1
m

2
Ra

2~u!G
2

1

2E0

L

duE
0

L

du8(
ab

qab~u2u8!Ra~u!•Rb~u8!,

~2.5!

where qab(u) are n3n variational functions to be deter
mined, with n→0 at the end. The best variational Ham
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1732 PRE 61YADIN Y. GOLDSCHMIDT
tonian is determined by the stationarity of the variational f
energy which is given by@11,1,12#

n^F&R5^Hn2hn&hn
2

1

b
lnE DR1•••DRn exp~2bhn!.

~2.6!

The general equations satisfied byqab(u) where discussed in
Refs. @6,7,9#. We showed that although the diagonal e
mentsqaa(u) must depend on the arc-length variableu, the
off diagonal elementsqaÞb which are spin-glass-like orde
parameters can to be chosen to beu-independent; in othe
words there is a consistent solution of the variational eq
tions with these properties.~The existence of a time
persistent part to the off diagonal elements ofqab is well
known in the investigation of quantum spin glass syste
@13# and is crucial for the capture of the correct physics
such systems.! In Refs.@6,9# we proceeded to solve the equ
tions approximately for the case of a nonzero confining h
monic potential characterized by a spring constantmÞ0. For
a quantum particle at not too low a temperature~equivalent
for moderate values ofL in the polymer problem! we ob-
tained a numerical solution of the equations@6# for different
types of correlations of the random potential. In Ref.@9# we
considered the limit of largeL and finitem ~in the context of
the vortex line problem!, and for d52, under certain ap-
proximations obtained an analytical solution to first order
g ~the strength of the disorder!. Here we would like to con-
sider the whole range of disorder for largeL and also inves-
tigate the limitm→0. Our goal is also to make contact wit
the calculation of EM. Hence we will start with a somewh
simpler approach with a finite number of variational para
eters in lieu of the infinite number of such parameters int
duced in our previous work. As will turn out this is appr
priate for the current problem and allows us to so
everything analytically without any further approximation

EM considered only the case ofm50 and chose

qab~u2u8!52
q2M

9
dabd~u2u8!, ~2.7!

where q is a single variational parameter.@In an appendix
they considered a slightly more general form but it is s
proportional tod(u2u8).# Here we claim that we need t
introduce static (u-independent! off-diagonal elements for
qab and also add a static diagonal part. This will help capt
the correct physics of the problem as in the case of the qu
tum spin glass systems mentioned above. Thus we chos

qab~u2u8!52dab@~l2m!d~u2u8!1~l12l!/L#

1~12dab!s/L, ~2.8!

and we have three variational parametersl, l1, ands. The
variablesl,l1 represent two values ofl(vÞ0) and l(v
50) instead of the general functionl(v) introduced in Ref.
@6# ~which involves an infinity of variational parameters!.
The variables represents a ‘‘spin glass’’ type variable whic
loosely speaking is a measure of ‘‘freezing.’’

At this point it is important to note that apart from th
m-dependent term, the HamiltonianHn given in Eq.~2.2! is
invariant the transformation
e

-

-

s

r-

t
-
-

l

e
n-

Ra~u!→Ra~u!1C, a51, . . . ,n, ~2.9!

whereC is a constant vector. This reflects the fact that in t
infinite system, without a confining harmonic term, after a
eraging over the random potential the interaction is tran
tional invariant. A good variational Hamiltonian must be o
that preserves this translational symmetry. If we consider
variational Hamiltonianhn as given by Eq.~2.5!, where the
m-dependent part has been separated explicitly, the rem
ing interaction becomes translational invariant under
transformation~2.9! providedqab(u) satisfies

E
0

L

du(
b

qab~u!50. ~2.10!

Thus the variational ansatz must be rich enough to imp
ment the relation~2.10!. The ansatz chosen by EM as give
by Eq. ~2.7! violates the condition~2.10! for any qÞ0. It
imposes an unphysical origin on the system when none
ists. We will see below@Eq. ~2.48!# that with our variational
parametrization as given in Eq.~2.8! the stationarity of the
variational free energy gives rise to the condition~2.10!. This
is true even in the more general case of replica symm
breaking, see Eq.~3.5! below. The condition~2.10! effec-
tively reduces the number of variational parameters by
and will be crucial for obtaining the solution of the problem

Substituting Eq.~2.8! in Eq. ~2.5! for hn , the variational
Hamiltonian becomes

hn5E
0

L

du(
a51

n FM

2 S ]Ra~u!

]u D 2

1
l

2
Ra

2~u!G
1

1

2L (
ab

pabE
0

L

duE
0

L

du8Ra~u!•Rb~u8!,

~2.11!

with

pab5S l12l 2s ••• 2s

2s l12l � A

A � � 2s

2s ••• 2s l12l

D , ~2.12!

which reduces to the EM variational Hamiltonian ifpab50
~i.e., if l15l and s50). For now we consider a replic
symmetric parametrization. We will discuss a possible r
lica symmetry breaking parametrization later on. Using t
parametrization ofhn our task is to calculate the free energ
from Eq. ~2.6!. This is achieved by first writing down the
propagator associated withbhn :

Gab~v!5$b@~Mv21m!12q̃~v!#%ab
21 ~2.13!

with

q̃ab~v!5E
0

L

duqab~u!exp~2 ivu!. ~2.14!

For the functionqab(u) given by Eq.~2.8! we find
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q̃ab~v!52dab@~l2m!1~l12l!dv,0#1~12dab!sdv,0 ,
~2.15!

and thus

Gab~v!5b21$@Mv21l1~l12l1s!dv,0#12sdv,0%ab
21 ,

~2.16!

which gives after inverting ann3n matrix and taking the
limit n→0,

bGab~v50!5
l112s

~l11s!2
dab1

s

~l11s!2
~12dab!,

~2.17!

bGab~vÞ0!5
1

Mv21l
dab . ~2.18!

Since the interval on whichu is defined is finite (0<u
<L), the ‘‘frequencies’’v are discrete and satisfy

vm5
2p

L
m, m50,61,62, . . . . ~2.19!

We can now use the fact that

^Ra~u!•Rb~u8!&[dgab~u2u8!5
d

L (
v

e2 iv(u2u8)Gab~v!,

~2.20!

to obtain an expression for the correlation function of inter
and for the free energy. For the correlation function we o
tain

C~ l !5
1

d
^^@R~ l !2R~0!#2&&R

5
1

nd (
a51

n

^@Ra~ l !2Ra~0!#2&

5
2

nL (
a51

n

(
v

Gaa~v!~12e2 ivl !

5
2

bL (
vÞ0

12e2 ivl

Mv21l
. ~2.21!

For the free energy we find from Eq.~2.6!

n^F&
d

5const1
1

2
~m2l! (

a51

n

(
v

Gaa~v!

2
1

2 (
ab

pabGab~v50!2
1

2b (
v

tr ln G~v!

2
bgL

2d E
0

L

dzE dk

~2p!d

3(
ab

expS 2
k2

2L (
v

@Gaa~v!1Gbb~v!

22e2 ivzGab~v!# D . ~2.22!
t
-

We now use the formula@see, e.g., Gradshteyn and Ryzh
@14#, Eq. ~1.445.2!#

1

L (
v

e2 ivz

Mv21l
5

1

2AMl

cosh@a~122z/L !#

sinh~a!
,

a5
L

2
Al

M
, 0<z<L ~2.23!

to calculate the correlation function and the free energy
the limit n→0: For the correlation function we obtain

C~ l !5
1

bAMl

3S coth
L

2
Al

M
2

cosh@LAl/M ~122l /L !/2#

sinh~LAl/M /2!
D

~2.24!

and for the free energy

b^F&
Ld

5const1
~m2l!

4AMl
coth

L

2
Al

M
1

m

2L S l112s

~l11s!2
2

1

l D
1

1

L
ln sinh

L

2
Al

M
1

1

2L
lnS 11

s

l1
D1

1

2L
ln

l1

l

2
1

2L

s

l11s
2

b2g

2d E
0

L

dzE dk

~2p!d
@exp~2k2a1!

2exp~2k2a2!#, ~2.25!

with

a15
1

2bAMl
S coth

L

2
Al

M
2

cosh@LAl/M ~122z/L !/2#

sinh~LAl/M /2!
D ,

~2.26!

a25
1

bL S 1

l11s
2

1

l D1
1

2bAMl
coth

L

2
Al

M
.

~2.27!

Some of the details of the calculation are given in the A
pendix. The constant term does not depend on the variati
parameters. So far the calculation has been exact but now
are interested in the largeL limit. Before we proceed it will
be instructive to pause to review the calculation of EM w
have chosenp50, i.e.,s50 andl15l ~recall that in their
notationl}q2). They also takem50. In that case the free
energy simplifies to give

b^F&
Ld

5const2
l

4AMl
coth

L

2
Al

M
1

1

L
ln sinh

L

2
Al

M

2
b2g

d E
0

L/2

dzE dk

~2p!d
@exp~2k2a1!

2exp~2k2a2!#, ~2.28!
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1734 PRE 61YADIN Y. GOLDSCHMIDT
with a1 still given by Eq.~2.26! and

a25
1

2bAMl
coth

L

2
Al

M
. ~2.29!

We also noticed that sincea1 is symmetric about the poin
z5L/2 we have limited thez integration up toL/2 and mul-
tiplied the integral by 2. We can now take the limit of larg
L. It is at the pointz5L/2 that the integrand vanishes fo
largeL. In this limit we find ~upon dropping the constant!:

b^F&
Ld

5
1

4
Al

M
2

b2g

d E
0

`

dzE dk

~2p!d

3@exp~2k2a1!2exp~2k2a2!#, ~2.30!

with

a15
1

2bAMl
@12exp~2zAl/M !#, a25

1

2bAMl
.

~2.31!

Notice that the factor of 2 in front of the integral due to t
aforementioned symmetry was missed in Ref.@1#. This is of
no importance since it just renormalizes the strength of
disorder. The integral overk can now be done to yield

b^F&
Ld

5
1

4
Al

M
2

b2g

d S bAMl

2p D d/2E
0

`

dz

3F 1

@12exp~2zAl/M !#d/2
21G . ~2.32!

At this point we realize that thez integral is infrared diver-
gent for any dimensiond>2. We can trace this back to th
short distance singularity of the Dirac delta function corre
tion. We thus replace the delta function by a regulariz
form:

d (d)~R!→ 1

~pdj2!d/2
expS 2

R2

dj2D , ~2.33!

wherej is small~we can think of it as the intrinsic diamete
of the polymer thread!. Using the representation given by E
~2.4! for the right-hand side and carrying out they integra-
tion yields

b^F&
Ld

5
1

4
Al

M
2

b2g

d E
0

`

dzE dk

~2p!d
expS 2

d

4
j2k2D

3@exp~2k2a1!2exp~2k2a2!#, ~2.34!

and the integrals are now properly regularized to yield
finite expression. To find the optimum variational parame
l, we take the derivative of the above expression with
spect toAl:
e

-
d

a
r
-

15
2bg

dl
AM

l E
0

`

dtE dk

~2p!d
k2 expS 2

d

4
j2k2D

3$@12exp~2t!2t exp~2t!#exp~2k2a1!

2exp~2k2a2!%, ~2.35!

and thez variable has been rescaled byz→tAM /l. The k
integration can now be done to yield

15
2gbd/212Md/411

~2p!d/2
l (d24)/4E

0

`

dt

3H 12e2t2te2t

~12e2t1D!d/211
2

1

~11D!d/211J , ~2.36!

with D5j2dbAMl/2. At this point we see that the integra
is finite for d,4 even in the limitD→0 ~which follows
from j→0). Let us denote the integral in this limit byI d :

I d5E
0

`

dtH 1

~12e2t!d/2
2

te2t

~12e2t!d/211
21J ,

~2.37!

so, Eq.~2.36! becomes

15
2gbd/212Md/411

~2p!d/2
I dl (d24)/4. ~2.38!

Unfortunately EM did not realize that this integral
negativefor d53 ~and alsod52). The indefinite integral
can be carried out analytically~e.g., usingMATHEMATICA ! in
d53 to give

I 3~t!52t1
2

3
A12e2tS 2

1

12e2t
1

t

~12e2t!2D
1

1

3
ln

11A12e2t

12A12e2t
,

I 35 lim
t→`

I ~t!2 lim
t→0

I ~t!52
2

3
~12 ln 2!'20.20457.

~2.39!

@In d52, one hasI 2(t)5t/(et21), and I 2521.# From
here it follows that Eq.~2.38! has no solution forl. This is
a very important observation. Notice that all fractional po
ers ofl are always to be taken as positive. For example
the integral
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E dk

~2p!d
k2 exp~2k2a2!5E dk

~2p!d
k2

3expS 2k2
1

2bAMl
D

5
d

2d11pd/2
~2bAMl!d/211,

~2.40!

which is part of the result derived above,Al in the integrand
is positive, and so must be the result of the integration si
the integrand is positive definite. There is no way to arg
that l1/4 can be taken as the negative square root ofAl. To
elucidate further the fact that there is no value ofl which
extremize the variational free energy we return to Eq.~2.34!
of the free energy and carry out thek integration to find for
d53

b^F&
3L

5
1

4
Al

M
2

gb7/2M5/4l1/4

3~2p!3/2 E
0

`

dt

3S 1

@11D2exp~2t!#3/2
2

1

~11D!3/2D ,

~2.41!

with D5j2dbAMl/2. Again the integral can be done an
lytically ~MATHEMATICA ! and we find

b^F&
3L

5
1

4
Al

M
2

gb7/2M5/4l1/4

3~2p!3/2

3S 22~12 ln 2!1
2

AD
1O~AD!D , ~2.42!

substituting forD one obtains

b^F&
3L

52
gb3M

~3p!3/2j
1

1

4
Al

M

1~12 ln 2!
2gb7/2M5/4l1/4

3~2p!3/2
1O~j!. ~2.43!

We see that the divergent term~asj→0) is independent of
l. We also see that the free energy is a monotonically
creasing function ofl and thus has no extrema as a functi
of it. Derivative of the last expression with respect toAl
agrees with our previous result. Thus we see that the
parameter variational Hamiltonian does not yield a meani
ful result.

Let us now return to the more general expression for
variational free energy given in Eq.~2.25!. Before we con-
sider the largeL limit we can draw a general conclusion. L
us calculate the derivative of the fee energy with respec
l1 ands:
e
e

-

ne
-

e

to

2ml123ms13sl112s21l1
2

2L~l11s!3

5S ]a2

]l1
D b2g

2d E
0

L

dzE dk

~2p!d
k2 exp~2k2a2!,

~2.44!

s~2m2l12s!

2L~l11s!3
5S ]a2

]s D b2g

2d E
0

L

dzE dk

~2p!d
k2 exp~2k2a2!.

~2.45!

Since

S ]a2

]l1
D1S ]a2

]s D50, ~2.46!

we find that upon adding the two equations we get

l12m1s

2L~l11s!2
50, ~2.47!

which implies

l11s5m. ~2.48!

This is an important general result. Substituting this resul
Eq. ~2.44! we find

s5
bg

d
LE dk

~2p!d
k2 exp~2k2a2!5

2pbgL

~4pa2!d/211
,

~2.49!

with

a25
1

bL S 1

m
2

1

l D1
1

2bAMl
coth

L

2
Al

M
, ~2.50!

which gives a relation betweens andl. However as we will
see in a moment, only the combinationl11s5m, enters in
the equation forl.

Returning to Eq.~2.25! we see that upon taking the de
rivative with respect toAl the only dependence ons andl1
is through the combinationl11s in a2. It is simpler to take
the limit of largeL and to write up the resulting equation fo
l up to exponentially small terms inL:

l2m5
4~l2m!

L
AM

l

1
2bg

d
AM

l E
0

~L/2!Al/M
dtE dk

~2p!d
k2

3$exp~2k2a1!@12exp~2t!2t exp~2t!#

2exp~2k2a2!~124AM /l/L !%, ~2.51!

with

a15
12e2t

2bAMl
, a25

1

2bAMl
1

1

bLm
2

1

bLl
.

~2.52!
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If m is finite, one can proceed with expanding exp(2k2a2) in
powers of 1/L as will be done later. However, if one attemp
to take the limitm→0 we see immediately a potential pro
lem because of the term 1/(bLm) in a2. If we carry out the
k integration we find

l2m5
2gbd/212Md/411

~2p!d/2
ld/4E

0

~L/2!Al/M
dt

3S 12e2t2te2t

~12et!d/211
2

1

S 11
2

L
AM

l

l2m

m
D d/211D ,

~2.53!

where we have omitted subleading terms in 1/L. As m→0
for fixed largeL, the last term in the integral vanishes~as
l2m remains finite forgÞ0). The integral overt no longer
converges for largeL, but is rather proportional toL. To
leading order we get~by subtracting and adding 1 to th
integrand!

l5
gbd/212Md/411/2L

~2p!d/2
l (d12)/4, ~2.54!

which gives

l5S gbd/212Md/411/2L

~2p!d/2 D 4/(22d)

. ~2.55!

We see that the borderline dimension appears to bed52.
Indeed from Eq.~2.24! it follows that for largeL

C~ l !'
1

bAMl
@12exp~2l Al/M !#, ~2.56!

and thus the radius of gyration satisfies

R;l21/4;~gL!21/(22d), ~2.57!

which agrees perfectly with Eq.~1.6! for d,2. To see what
happens ford.2 we can easily show that in the limitm
→0 the free energy becomes of the form

b^F&
Ld

5
1

4
Al

M
2

b2g

d S bAMl

2p D d/2AM

l E
0

~L/2!Al/M
dt

3
1

@11D2exp~2t!#d/2
, ~2.58!

where again we regularized withD5j2dbAMl/2. This
gives

b^F&
Ld

5const1
1

4
Al

M
2

b2g

2d S bAMl

2p D d/2

L, ~2.59!
and when usingl;d2b22M 21R24 we obtain

b^F&5const3L1
d2

4bM

L

R2
2

dd/2b2g

2~2p!d/2

L2

Rd
, ~2.60!

which coincides with Eq.~1.4! and shows that ford.2, F
→2` as R→0 and there is always collapse. Thus we s
that in the limit ofm→0 we recover the annealed result fro
the replica calculation as expected.

If on the other handm is finite, we can expand
exp(2k2a2) in powers of 1/L and we find to leading orde
in L:

l2m5
2bg

d
AM

l E
0

`

dtE dk

~2p!d
k2FexpS 2k2

12e2t

2bAMl
D

3@12exp~2t!2t exp~2t!#2expS 2
k2

2bAMl
D G

1
4bg

d
AM

l E dk

~2p!d
k 2expS 2

k2

2bAMl
D

1
g

d S 1

m
2

1

l D E dk

~2p!d
k4 expS 2

k2

2bAMl
D .

~2.61!

The last two terms are also O~1! although they originated
from seemingly 1/L terms, since we obtain a factor ofL from
the range of integration overt. Evaluating the integrals we
find

l2m5
2gbd/212Md/411

~2p!d/2 S I d121
d12

2

l2m

m Dld/4.

~2.62!

For smallg we can solve this equation in powers ofg. De-
fining a dimensionless constant

g̃5
g~b2M !(d14)/4m (d24)/4

~2p!d/2
, ~2.63!

we cast the Eq.~2.62! in the form

h511g̃2S I d1
22d

2
1

21d

2
hDhd/4, ~2.64!

with h[l/m. To second order ing̃ we find

l/m5112~ I d12!g̃1~ I d12!@d~ I d12!12~d12!#g̃2

1••• . ~2.65!

Thus asg increases from 0,l is an increasing function ofg
starting from an initial value ofm. However, a numerica
solution of Eq.~2.62! ~for d53) reveals that the solution
becomes ill behaved asl becomes of magnitude;2m. This
happens forg̃;1/@27/4(I 312)#. The reason for this is as wil
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become evident in the next section is that the replica s
metric solution becomes invalid at this point and has to
replaced by a replica symmetry breaking solution. This w
become clear in the next section where we will find the c
rect solution for larger values ofg̃. It is also clear from Eq.
~2.63! that for fixedg asm→0, g̃ becomes large and we wi
be in the region when RSB is to be used. Thus the rang
applicability of the replica symmetric solution is minimal fo
a small value ofm.

The rest of the section can be skipped on first reading
the paper and the interested reader might continue direct
the next section discussing the RSB solution. For compl
ness we display here the form Eq.~2.61! takes for a genera
correlation of the disorder defined in Eq.~1.14!. We can use
the representation given in Eq.~2.4! to obtain

l2m524bgAM

l E
0

`

dtF f̂ 8S 12e2t

bAMl
D

3@12exp~2t!2t exp~2t!#2 f̂ 8S 1

bAMl
D G

28bgAM

l
f̂ 8S 1

bAMl
D

14gS 1

m
2

1

l D f̂ 9S 1

bAMl
D , ~2.66!

where we defined

f̂ ~a![E dyf ~y2/d!E dk

~2p!d
exp~2 ik•y!expS 2

ak2

2 D
5

1

G~d/2!
E

0

`

dx xd/221e2xf S 2xa

d D , ~2.67!

and the primes stand for derivatives off̂ , which can be ob-
tained from the first line of Eq.~2.67! by taking the deriva-
tive with respect toa under the integral sign.

At this point we would like to discuss the more comple
variational scheme that we used in Refs.@6,9# and show that
all our conclusions concerning the limitm→0 follows from
that scheme as well. Since the notation there was diffe
we will translate the equations to the present notation but
will not rederive them here. What we did there was to co
sider a variational scheme in which we allowed the varia
l to depend onv and we extremized the free energy wi
respect to each variablel(v). The propagatorG(v) defined
in Eq. ~2.16! now becomes

Gab~v!5b21
„$Mv21l~v!

1@l12l~0!1s#dv,0%12sdv,0…ab
21 . ~2.68!

We have found that the relationl11s5m still holds ands
andl(v) satisfy the equations

s522bgL f̂8~2a2!, ~2.69!
-
e
l
-

of

f
to
e-

nt
e
-
e

l~v!2m52s22bgE
0

L

dz~12eivz! f̂ 8„2a1~z!…, vÞ0,

~2.70!

with

a1~z!5
1

bL (
vÞ0

12e2 ivz

Mv21l~v!
, ~2.71!

a25
1

bmL
1

1

bL (
vÞ0

1

Mv21l~v!
. ~2.72!

For a regularized delta function correlation we have

f̂ 8~a!52
1

2~2p!d/2

1

~dj2/21a!d/211
. ~2.73!

In the limit m→0, we observe thats→0, and there is no
longer a cancellation of the contributions linear inL between
the two terms on the right-hand side of Eq.~2.70!. Instead
we get

l~v!522bgL f̂8S 2

bL (
vÞ0

1

Mv21l~v!
D , ~2.74!

which yields anv- independent solution that for the del
correlation becomes

l5
bgL

~2p!d/2
~bAMl!d/211. ~2.75!

This result exactly coincides with Eq.~2.54! derived previ-
ously.

III. REPLICA SYMMETRY BREAKING

In the previous section we have seen that the replica s
metric solution becomes invalid for fixed amount of disord
and small harmonic constantm. In this section we show the
emergence of a different solution of the variational equat
which is more adequate for our problem. But in order to ta
advantage of such a solution we must use a more gen
variational scheme. Returning to Eqs.~2.8!–~2.12!, we have
extended the parametrization of the matrixpab in Eq. ~2.12!
to allow for one-step RSB by having two off-diagonal p
rameterss0 (x,xc) ands1 (x.xc) together with a break-
ing point xc (0<xc<1). Herex is Parisi’s replica index.
For details of Parisi’s RSB scheme see reviews of spin g
theory @15–17#. Thus our variational scheme includes no
five parameters. A one step breaking is sufficient for the c
of short range correlations of the random potential@6,18#.

We were able to calculate analytically the free ener
with the new parameters. Here we display the final result,
details given in the Appendix:
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b^F&
Ld

5
~m2l!

4AMl
coth

L

2
Al

M
1

m

2L F 1

xc~l11s12S!

1S 12
1

xc
D 1

l11s1
1

s0

~l11s12S!2
2

1

lG
1

1

L
ln sinh

L

2
Al

M
1

1

2L
lnS 11

s12S

l1
D2

1

2L

3S 12
1

xc
D lnS 12

S

l11s1
D1

1

2L
ln

l1

l

2
1

2L

s0

l11s12S
2

b2g

2d E
0

L

dzE dk

~2p!d

3@exp~2k2a1!2xc exp~2k2a2l !2~12xc!

3exp~2k2a2b!#. ~3.1!

We introduced the notation

S5xc~s12s0!, ~3.2!

the variablea1 is still given by Eq.~2.26!, and we defined

a2l5
1

bL F 1

xc

1

l11s12S
1S 12

1

xc
D 1

l11s1
2

1

lG
1

1

2bAMl
coth

L

2
Al

M
, ~3.3!

a2b5
1

bL S 1

l11s1
2

1

l D1
1

2bAMl
coth

L

2
Al

M
. ~3.4!

From the free energy we are able to get the following fi
relations~everywhere we eliminateds1 in favor of S)

l11s02~121/xc!S5m, ~3.5!

which replaces the relationl11s5m established above fo
the replica symmetric solution,

s05
bLg

d E dk

~2p!d
k2 exp~2k2a2l !, ~3.6!

S5
bg

d
LxcE dk

~2p!d
k2@exp~2k2a2b!2exp~2k2a2l !#,

~3.7!

S

m1S
2 lnS 11

S

m D5
bg

d
Lxc

S

m~m1S!
E dk

~2p!d
k2

3exp~2k2a2l !1
b2g

d
~Lxc!

2E dk

~2p!d

3@exp~2k2a2l !2exp~2k2a2b!#,

~3.8!
l2m5
2bg

d
AM

l E
0

~L/2!Al/M
dtE dk

~2p!d
k2

3$exp~2k2a1!@12exp~2t!2t exp~2t!#

3@2xc exp~2k2a2l !2~12xc!exp~2k2a2b!#

3~124AM /l/L !%, ~3.9!

where we defined

a15
12e2t

2bAMl
, ~3.10!

a2b5
1

2bAMl
2

1

bLl
1

1

bL~m1S!
, ~3.11!

a2l5
1

2bAMl
2

1

bLl
1

1

bm

1

Lxc
1

1

b~m1S! S 1

L
2

1

Lxc
D .

~3.12!

We have simplified some expressions assuming largeL and
dropped a term of order 1/L in Eq. ~3.9!.

If we denote byyc5Lxc we realize that equations~3.7!
and~3.8! can be solved forS andyc of O(1) with respect to
L. These equations are similar for those of a classical part
in a random potential@18#, except for the variablel which
does not appear there.~One can recover the equations for th
classical particle by taking the limitM→` with L fixed. One
needs to replacebL with b for a particle. This limit is not
meaningful for a polymer.! For small m we can have an
approximate analytical solution:

S5
Agd

~2p!d/4
~bAMl!d/411Au ln mu, ~3.13!

yc[Lxc5
1

b
Ad

g
~2p!d/4~bAMl!2d/4Au ln mu, ~3.14!

s05const

3g(22d)/4bL~bAMl!2d(d12)/8md/211u ln mu(d12)/4.

~3.15!

An analysis of the equations~expanding in power series in
S) shows that this solution is valid as long as the condit

2bAMlS g~21d!

221dpd/2D 2/(41d)

m24/(41d)>1 ~3.16!

is satisfied. This inequality can also be expressed in the f

g̃~d12!S l

m D (d14)/4

>1, ~3.17!

where g̃ has been defined in Eq.~2.63!. When the equality
holds we haveS50 andxc5(41d)AMl/(2mL). This can
also be verified by using this condition at the equality po
in the above solutions forS andxc and we see that indee
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S;O(m), andxc;AMl/(mL). Solving the equality condi-
tion given by Eq.~3.17! together with Eq.~2.64! gives

h511A412I d

d12
'1.85 for d53, ~3.18!

g̃'@~d12!h(d14)/4#21.0.068 for d53 ~3.19!

in agreement with our numerical solution of Eq.~3.17! which
broke down forh'2 for d53. So the point when the replic
symmetric solution has to be replaced by the RSB solutio
just below the point that the RS solution becomes ill b
haved.

If on the other handm is small but fixed we can use th
solution we have obtained above in the equation forl, in the
limit of large L. We obtain

l2m5
2bg

d
AM

l E
0

`

dtE dk

~2p!d
k2$exp@2k2a0~12e2t!#

3@12exp~2t!2t exp~2t!#2exp~2k2a0!%

2
bgyc

d E dk

~2p!d
k2

3H expF2k2S a01
S

bycm~m1S! D G2exp~2k2a0!J
1

4bg

d
AM

l E dk

~2p!d
k2exp~2k2a0!

1
g

d S 1

m1S
2

1

l D E dk

~2p!d
k4 exp~2k2a0!, ~3.20!

where we defined

a0[1/~2bAMl!. ~3.21!

We can check that forS50 it reduces to the replica sym
metric equation. Carrying out the integrals we get

l2m5
2gbd/212Md/411

~2p!d/2 H I d121
yc

2
Al

M

3F12S 11
2SAMl

ycm~m1S!
D 2d/221G

1
d12

2

l2m2S

m1S J ld/4, ~3.22!

and we have to substitute forS andyc ~which are functions
of l) from Eqs.~3.13! and ~3.14!, respectively. If we now
consider the case of strong disorder we can neglectm rela-
tive to l andS and the above equation simplifies to give
is
-

l12d/45
2gbd/212Md/411

~2p!d/2

3F I d121
yc

2
Al

M
1

d12

2 S l

S
21D G .

~3.23!

Substituting forS andyc we find

l (42d)/45
2gbd/212Md/411

~2p!d/2 F I d1
22d

2

1
Ad/4

Ag
~2p!1/4db2(41d)/4M 2(41d)/8l (42d)/8

3Au ln muS 11
d12

du ln mu D G . ~3.24!

Let us seek a solution of the form

l5C8/(42d)~b2M !(41d)/(42d)g4/(42d). ~3.25!

Substituting in Eq.~3.24! we obtain a quadratic equation fo
C and to leading order asm→0 we find

l5
d4/(42d)

~2p!2d/(42d)
~b2M !(41d)/(42d)~gu ln mu!4/(42d).

~3.26!

Using this result inside the parentheses in Eq.~3.24! we see
that we getI d121 1

2 du ln mu. This shows that we were justi
fied a posteriori in neglecting the constant terms. It als
shows that the negative constantI d of EM @see Eq.~2.38!#
has been replaced by the term12 du ln mu. From this final result
we obtain the radius of gyration

R;~b2Ml/d2!21/45S d(d22)/2

~2p!d/2
b4M2g u ln mu D 21/(42d)

;S 4dd/2

~2p!d/2b4
b2g ln VD 21/(42d)

. ~3.27!

This is the main result of the paper. It recovers the E
result but with their constantI d being replaced by 2 lnV as
has been argued by Cates and Ball@2#. Note that we have
replacedM in favor of the bond stepb.

Substituting the result~3.26! obtained forl in Eqs.~3.13!
and ~3.14! we find

S5S d

~2p!d/2
gb (d14)/2M (d14)/4u ln mu D 4/(42d)

,

~3.28!

yc5Lxc5S dd22

~2p!d
g2bd14Mdu ln mud22D 21/(42d)

.

~3.29!

The second equation is important sincexc can not exceed 1
~Parisi’s variablex must satisfy 0<x<1 @15#!. For 2,d
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,4 we see thatxc actually decreases whenm becomes smal
so there is no problem. Also ford52 there is no problem
since for large enoughL, xc is also within range. On the
other hand whend,2, xc increases whenm becomes smal
~or equivalentlyV becomes large! and eventually will exceed
1. For example ford51 we see that this happens foru ln mu
;g2L3, which corresponds to an extremely large volum
V8;exp(g2L3) whenL is large. ForV.V8 we revert to the
annealed result, which ford,2 predict R;(Lg)1/(d22) as
was shown in the last section. In the largeL limit this again
leads to a fully collapsed polymer.

We have also verified that to leading order the free ene
is given by Eq.~1.10! ~there is a subleading term of the for
Lg/Rd22 that can be neglected!. It is interesting that the
condition xc,1 that we have applied above has a physi
significance@2#. The attractive term in the free energy is@see
Eq. ~1.10!# of the form2LAg ln V/Rd. This represents~up to
a sign! the binding energy of the chain. In order that t
polymer will be confined to a small single region of sizeR as
given above in Eq.~3.27!, the binding energy should no
exceed the translational entropy; ln V. The condition

ln V,LAg ln V/Rd ~3.30!

is equivalent~up to some irrelevant constants! to the condi-
tion xc,1 as can be verified by using the result~3.27! in Eq.
~3.30!.

IV. CONCLUSIONS

We have considered the problem of a polymer~a Gauss-
ian chain! in a quenched disordered medium. The probl
maps also to a quantum particle in a random potential, an
the presence of an additional confining harmonic force~of
spring constantm) it maps also to the problem of a flux lin
in a cage potential and random columnar disorder. We
ried out a replica calculation in the presence of a confin
harmonic force, and succeeded to ‘‘improve’’ the previo
results of EM@1#, in the sense that the~unphysical! constant
is replaced by lnV in the equation for the variational param
eter l and hence also in the dependence of the radius
gyration on the strength of the disorder. Of course our c
culation does not diminish the accomplishments of EM w
pioneered the use of the variational method in the contex
the replica calculation and for the first time obtained t
correct scaling exponent for the dependence of the radiu
gyration on the disorder for finite systems. In the infin
volume limit the chain collapses since it can find a very de
potential minimum somewhere which can accommodate
For 2<d<4 the chain islocalizedin the sense@2# that even
in the largeV limit two long chains introduced into the sys
tem will find the same small neighborhood to occupy~with a
probability approaching 1 for largeL). This is a conse-
quence of the off diagonal spin-glass order parameter
introduced that measures overlap between different repli
It is comforting to find out that the replica calculation ca
reproduce all the physical arguments introduced so clev
by CB @2#.
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APPENDIX

Here we give some of the intermediate steps leading
Eqs. ~2.6! and ~2.22!. To evaluate the expectation value
the last term inHn it is most useful to write

^expik@Ra~u!2Rb~u8!#&hn

5E DR1•••DRn expS (
c
E

0

L

dvVc~v !•Rc~v !

2
1

2 (
cd

E
0

L

dvE
0

L

dv8Rc~v !gcd
21~v2v8!Rd~v8! D

3F E DR1•••DRn expS 2
1

2 (
cd

E
0

L

dvE
0

L

dv8

3Rc~v !gcd
21~v2v8!Rd~v8! D G21

5expS 1

2 (
cd

E dvE dv8Vc~v !gcd~v2v8!Vd~v8! D
5expS 2

1

2
k2@gaa~0!1gbb~0!22gab~u2u8!# D ,

~A1!

where

Vc~v !5 ik@dc,ad~v2u!2dc,bd~v2u8!#. ~A2!

Next we show how to evaluate other contribution to the fr
energy:

(
v

bGaa~v!5 (
vÞ0

1

Mv21l
1

l112s

~l11s!2

5
L

2AMl
coth

L

2
Al

M
2

1

l
1

l112s

~l11s!2
.

~A3!

Also

2
1

2n (
ab

pabbGab~v50!52
1

2n
Tr p G~0!

5
l~l112s!

2~l11s!2
2

1

2
, ~A4!

and
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2
1

2 (
v

tr ln bG~v!5
1

2 (
v

tr ln@b21G21~v!#

5
n

2 (
v

ln~Mv21l!2
n

2
ln l

1
1

2
tr ln@b21G21~0!#, ~A5!

but

n

2 (
v

ln~Mv21l!5n lnS 2 sinh
L

2
Al

M D 1n const ~A6!

@see, e.g., Ref.@14#, p. 44, Eq.~1.431.2!#. The constant term
~which is infinite! is eliminated by the normalization of th
functional integral, and in any case does not depend onl.
Also

tr ln„b21G21~0!…5tr lnS l1 2s ••• 2s

2s l1 � A

A � � 2s

2s ••• 2s l1

D 5n ln l1

1n lnS 11
s

l1
D2n

s

l11s
1o~n2!.

~A7!

For the case of one-step RSB we have to calculate
propagator by inverting Parisi type matrices. It is helpful
use formulas found in an appendix of Ref.@12#. We find

bGaa~v50!5
1

xc~l11s12S!
1S 12

1

xc
D 1

l11s1

1
s0

~l11s12S!2
, ~A8!

bG~v50,x!5
s0

~l11s12S!2
, x,xc , ~A9!

bG~v50,x!5
1

xc~l11s12S!
2

1

xc

1

l11s1

1
s0

~l11s12S!2
, x.xc ,

~A10!

bGab~vÞ0!5
1

Mv21l
dab , ~A11!

wherex is Parisi’s index on the interval@0,1#.
Next we show how various other contribution to the fr

energy become in the RSB case:
e

1

n (
a

(
v

bGaa~v!

5 (
vÞ0

1

Mv21l
1

1

n (
a

(
v

bGaa~v50!,

~A12!

2
1

2n (
ab

pabbGab~v50!

52
1

2n
Tr p G~0!5

l

2
bGaa~v50!2

1

2
,

~A13!

and finally

2
1

2n (
v

tr ln bG~v!

5
1

2n (
v

tr ln@b21G21~v!#5
1

2 (
v

ln~Mv21l!

2
1

2
ln l1

1

2n
tr ln@b21G21~0!#5 lnS 2 sinh

L

2
Al

M D
1

1

2
ln

l1

l
1

1

2
lnS 11

s12S

l1
D2

1

2 S 12
1

xc
D

3 lnS 12
S

l11s1
D2

1

2

s0

l11s12S
1const1o~n!.

~A14!

The coefficienta1 in the exponential is given as before by

a15
1

L (
vÞ0

Gaa~v!~12eivz!, ~A15!

anda2 becomes

a2~x!5
1

L
@Gaa~v50!2G~v50,x!#1

1

L (
vÞ0

Gaa~v!

5a2l , x,xc ~A16!

5a2b , x.x, ~A17!

and the explicit expressions fora1 , a2l anda2b are given in
Eqs.~2.26!, ~3.3!, and~3.4!, respectively. Notice also that

1

n (
aÞb

exp@2k2a2~x!#52E
0

1

dx exp@2k2a2~x!#

52xc exp~2k2a2l !2~12xc!

3exp~2k2a2b!. ~A18!
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