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Replica field theory for a polymer in random media
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In this paper we revisit the problem of(aon-self-avoiding polymer chain in a random medium which was
previously investigated by Edwards and Muthukurt@M) [J. Chem. Phys39, 2435(1988]. As noticed by
Cates and BallCB) [J. Phys(France 49, 2009(1988] there is a discrepancy between the predictions of the
replica calculation of EM and the expectation that in an infinite medium the quenched and annealed results
should coincidgfor a chain that is free to moyand a long polymer should always collapse. CB argued that
only in a finite volume one might see a “localization transitio@t crossoverfrom a stretched to a collapsed
chain in three spatial dimensions. Here we carry out the replica calculation in the presence of an additional
confining harmonic potential that mimics the effect of a finite volume. Using a variational scheme with five
variational parameters we derive analytically tbr 4 the resulR~ (g|In uf) Y49~ (g In V)" Y4~ where
R is the radius of gyrationg is the strength of the disorder, is the spring constant associated with the
confining potential, and is the associated effective volume of the system. Thus the EM result is recovered
with their constant replaced by \has argued by CB. We see that in the strict infinite volume limit the polymer
always collapses, but for finite volume a transition from a stretched to a collapsed form might be observed as
a function of the strength of the disorder. For2 and for largeV>V'~exp@?? DL~ VC-dy the
annealed results are recovered &d(Lg)Y“~2), whereL is the length of the polymer. Hence the polymer
also collapses in the lardelimit. The one-step replica symmetry breaking solution is crucial for obtaining the
above results.

PACS numbg(s): 36.20.Ey, 05.40-a, 75.10.Nr, 64.60.Cn

[. INTRODUCTION than usual. In this situation the free energy of the chain is
crudely estimated to b&eglecting all numerical factors
There has been much interest in recent years in the prop- _ _
erties of polymer chains in a quenched random environment F(a,v)=L/R*+Lv+av?/2g. (1.3

[1-5]. This problem is directly related to that of a quantum ) , .
particle in a random mediufi, 7] and to that of a flux line in ~ HereL is the length of the chaimumber of monomejsRis

a type |l superconductor in the presence of random columndhe radius of gyratior_(or enddtp end distangend the vol-
defects[8,9] as will be made clear below. Thus its general Umea is related toR viaa=R" in d-spatial dimensions. The
application makes it important for a variety of physical situ- firSt term on the right-hand sid&HS) is an estimate of the
ations. free energy of a long chain confined to a region of st
The quantities of interest for the polymer problem are theh€ absence of an external potenfiste, e.g., Ref10], Eq.
free energy and the radius of gyration of a chain in all-12)]. The second term is just the potential energy of the
quenched white-noise potential. Here we consider only thehain in the random potential of strength The third term
case of a non-self-avoiding chain. Cates and Bjilgave a arises from the chance of incurring a random potential of
beautiful intuitive argument to the effect that a Gaussiarstrengthv. The quantity IP(v) gives an associated effective
chain S|_tuated in an |nf|n|t_e _random medium is always col-entropy for the system. Minimizing this free energy over
lapsed in the long-chain limit. Their argument goes as folhoth v and a determines the lowest free energy configura-

lows: Consider a white-noise random potentigk) of zero ., \rinimizing with respect tov yields v=—Lg/a. Sub-
mean whose probability distribution at each site is T .
stituting inF gives

Plv(x)]<cg™ Y2exp —v?/2g). (1.2 L LZg
o F(R):Q_ﬁ' (1.4)

If we now coarse-grain the medium and denotevbthe
average value of the potential over some region of volame Thjs shows that for angi=2, F— —« asR—0. Thus the
Then the coarse-grained potential will have the distribution jean size of the chain is zero, or in the presence of a cutoff

o - of a size of one monomer,
P.(v)x(g/a)” Y2exp —av?/2g). 1.2
a(v)><(g/a) N 9) (1.2 Rl d>2. 15

Consider a polymer chain situated in the random POteNEqr <2 the free energy has a minimum for
tial, and assume that it shrinks into a volumeorresponding '

to a place where the mean potentiaakes on a lower value R~(Lg)Y9=2) d<2, (1.6)

1063-651X/2000/6(@)/172914)/$15.00 PRE 61 1729 ©2000 The American Physical Society



1730 YADIN Y. GOLDSCHMIDT PRE 61

which in the long chain limit (=1/g) cuts off again aR  der far away from the origin of the potential is high. A sys-
~1. These results are the same as those for the case of t&8m in a harmonic potential is easier to solve than a system
annealed potential that is able to adjust locally to lower then a finite box. It also corresponds directly to the problem of
free energy of the system. The reason is that for an infinite flux line in a type Il superconductor where the cage poten-
system containing a finitéeven though longchain, space tial felt by a flux line due to its neighboring flux lines can be
can be divided into regions containing different realizationsmodeled by a harmonic potenti@ee below. In addition, we
of the potential, and the chain can sample all of these to finihtroduce more variational parameters, three for the case of
an environment arbitrarily similar to that which would occur replica symmetric parametrization and five for the case of
in the annealed situation. replica symmetry breakingRSB). These extra parameters
These results stand in contrast to the replica calculation dfiave physical significance as will be discussed below. We
Edwards and MuthukumaiEM) [1], who found that for a  will then use the replica method and the variational approxi-
long chain mation to tackle the problem and obtain the free energy and
1ia-d) the radius of gyration. For finitg we find thatR is indepen-
R~g , d<4 1.7 dent ofL (the chain lengthand as the disordered strength is
increased from zero,R is decreased from its initial

o p-dominated value according to the relatiorR
Note that the resulf1.7) is independent oL as opposed to ~(g/In u) Y49 [which agrees with EqL.1D since the

Eq. (1.6). To reconcile the two apparently different results, effective volume available to a system in a harmonic poten-

Cates and Ball argue that the quenched case is different froWal is InV~|In ]
the annealed case only for the case when the medium has a0 the other hand, if we try to take the ultim 0

finite volume V. In a finite box, arbitrarily deEp potential limit (which is the case originally studied by BMhe pre-
minima are not present. Instead the most negatiageraged  \joys solution becomes invalid and the chain collapses for

over a region of volumea<V occupied by the chain, is g=2 Ford<2 the annealed results are obtained in the
approximately_(keeping only_leading terms in t_he volurivg —0 limit as given above in Eq€1.4),(1.5),(1.6). This oc-
given by solving the equatiofthe left-hand sid¢LHS) of ¢ ;15 specifically because of the extra variational parameters
which represents the area under the tail of the distribdition |,geq beyond the single variational parameter used by EM.
— a We also demonstrate the importance of RSB for obtaining
f" dyP.(y)= -, (1.8  the correct physical result§The relevance of RSB to this
—o v model was recognized by Haronska and Vilffig, but un-
fortunately their calculation still predicted a constant coeffi-
cient of proportionality in the relatioR~ (cg) ~ Y~ 9| that
although differs from the EM result does not contain the
) (1.9 correct InV dependencé.
a To define the model of a polymer chain in a random po-
tential plus a fixed harmonic potential we use the Gaussian
chain approximation to write

when g?(4~ 9L -, whereasR~LY? when g?(“~9L 0.

which yields

gnVv

V=—

This expression when plugged into Ed.3) leads to[note
that the last term in Eq1.3) just becomes a constant inde-
pendent ofR]

_ L M (9R(U))2 [
L glhv H_fo du 5 ( | TRWHVRW), (112
FR)= =L\ (1.10

whereR(u) is thed-dimensional position vector of the chain

When this free energy is minimized with respecR gives ~ at arc lengthu (O<us=L), x governs the strength of the
rise to harmonic potential an®/(R) is the random potential satis-

fying:

(V(R)=0, (V(R)V(R")=gsDR-R’). (1.13

R~(glnhV) Y49 d<4 (1.12)

which agrees with Eq(1.7) and also with simulations per-
formed on a chain n a random medium O.f a fixed f'.n'teWe can actually consider a wider class of random potential
volume [4]. However, it is not clear from this explanation . . .
. . . ... correlations characterized by a functibn
why the replica calculation which has been done for an infi-
nite systenf1] gives rise to the finite volume result. To shed 2
iah : ; . . . (R—-R")
ght on this question we will show in this paper that the (V(R)V(R"))=gdfl ————], (1.14
reason for the discrepancy is the fact that EM used a varia- d
tional calculation which relies on a single variational param-
eter. We show specifically that the single parameter variawheref() is some given function. In Eq1.12 we choose
tional solution is inconsistent. the units such that is dimensionless and dois the length
What we will do first is, instead of considering a systemof the polymer in units of the Khun bond stdp The
in a finite volume which is hard to solve, introduce an exter-“mass” M is inversely proportional togb?, where 3
nal harmonic potentialwith a spring constant). Such an  =1/kgT (in d dimensions BM=d/b?). The caseR(0)
attractive potential has the effect of confining the chain to a=R(L) corresponds to a closed chain.
finite distance from the origin since the energy cost to won- The partition sum is given by the functional integral
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, R(L)=R’ There is also a mapping into the problem of a quantum
Z(R,R",L,B)= RO_R DR(u)exp(—pBH). (1.19  particle in a random potentiat a harmonic potential. This
©)= mapping read$l1,6]

We further define a boundary-free partition s(for a closed

chain by B—1h, L—ph, (1.23

and p(R,R",8)=Z(R,R',L=B%, B=1/4h) becomes the
Z(L,ﬁ)Zf dR Z(R,R,L,B) (1.1  density matrix of a quantum particle at inverse temperature
B. The variableu represents the Trottéimaginary time. In

L this caseM corresponds to the mass of the particle.
and the free energy is given by

BE=—InZ(L,B). (1.17) Il. VARIATIONAL CALCULATION

In order to average over the quenched random potential
we use the replica method. After introducingopies of the
chain and averaging over the random potential one obtains

The correlation function of interest is

1
C(/)= GUIR() =R, (118
(Z“>=j DR;---DR,exp(—BH,), (2.1
where
with
1</<L. (1.19
(I 2
The first average in Eq(1.18 is the thermal one with a anf du>, {M(aRa(u)) +ER§(U)
Boltzmann weight exg-8H) and the second average is o &=1l2 u 2
over the realizations of the random potential. For the range Bg (L L
of / given by Eq.(1.19, the boundary conditions on the -= duj du’ > SR, (u)—Ry(u’)].
chain, e.g., open or closed are not important for the behavior 2 Jo 0 ab
of C(/). 2.2
For the case of no disorddr.e., g=0) the correlation
function is given by Here we used the delta function potentied make contact
with EM), but later we will show how to generalize to a
1 general correlation. It is useful to replace the delta function

Co(/)= B\/M—M[l—exli—/VM/M)]- (1.20 by the equivalent expression

We see that in the limip—0, Co(/)~/1BM~(b%/d)/, 5(d)[Ra(u)_Rb(u/)]:f K explik[R,(U)— Ry(u) .
which corresponds to pure diffusion of the chdmndom )¢
walk). From the relation (2.3

For a general correlatiofsee Eq(1.14)] we can write

((R(0)?))r= , (1.2
BIMu fF{[Ra(u)—Ry(u")]1?/d}
we see that the polymer chain is confined to a volume of size ) dk
V satisfying :f dyf(y /d)f (2
d k. ; _ ,
InV~Z|In,u|, (1.22 xXexp(—ik-y)exp{ik[Ra(u) —Rp(u’)1}.
(2.9
for small . In order to proceed we use a quadratic variational Hamil-

The mapping of this problem to a vortex line in an har-tonjan to be the best approximationk,. This is given by
monic cage potential and random columnar defects is such

that the arc-lengtlu corresponds to the distanzalong thec Lo 2

. . T = . M [ dR,(u) T
axis (assuming this is also the direction of the magnetic hnzf du, > +§Ra(u)
field), M— e,= €5/ 2, which is the line tension of the flux 0 a=l u

line and y>=m,/m, is the mass anisotropyR is a two-

1 (L L
dimensional vector in tha—l:_) plane of the supe_rconductor - Ef duf du’ Y, gap(U—u’)Ry(u)-Rp(u’),
[8,9]. The harmonic potential plays an essential role as a 0 0 ab
reasonable approximation to the cage potential that a vortex (2.5

line feels due to the repulsion by its neighbors. Thus
~ ¢oB/®y whereB is the magnetic field and is the flux-  where q,,(u) are nXn variational functions to be deter-
oid. mined, withn—0 at the end. The best variational Hamil-
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tonian is determined by the stationarity of the variational free Ry(U)—R4(u)+C, a=1,...n, (2.9
energy which is given by11,1,19
! whereC is a constant vector. This reflects the fact that in the
_ infinite system, without a confining harmonic term, after av-
n(F)r=(Hn=hn)n, Elnf DRy - DRy exp(— ). eraging over the random potential the interaction is transla-
(2.6 tional invariant. A good variational Hamiltonian must be one
that preserves this translational symmetry. If we consider the
The general equations satisfieddpy,(u) where discussed in - yariational Hamiltoniarh,, as given by Eq(2.5), where the
Refs.[6,7,9. We showed that although the diagonal ele-,_gependent part has been separated explicitly, the remain-
mentsga,(U) must depend on the arc-length variablethe  jng interaction becomes translational invariant under the

off diagonal elements,.., which are spin-glass-like order transformation2.9) providedqa(u) satisfies
parameters can to be chosen towbadependent; in other

words there is a consistent solution of the variational equa-

tions with these properties(The existence of a time- f
persistent part to the off diagonal elementsogf, is well

known in the investigation of quantum spin glass SySteM§y, s the variational ansatz must be rich enough to imple-
[13] and is crucial for the capture of the correct physics iNment the relatior(2.10. The ansatz chosen by EM as given
such systemsIn Refs.[6,9] we proceeded to solve the equa- by Eq. (2.7) violates the conditior(2.10) for any q#0. It
tions_ approximately for th_e case of a nonzero confining harimposes an unphysical origin on the system when none ex-
monic potential characterized by a spring consgas0. FOr - iqiq \we will see beloWEq. (2.48] that with our variational

a quantum particle at not too low a temperat(gquivalent oo ametrization as given in E(R.8) the stationarity of the

for moderate values of in the polymer problemwe ob- . ational free energy gives rise to the conditi@i0. This
tained a numerical solution of the equatidi$ for different is true even in the more general case of replica symmetry
types of correlations of the random potential. In R&f. we breaking, see Eq3.5 below. The condition(2.10 effec-
considered the limit of large and finite (in the context of a1y reduces the number of variational parameters by one
the vortex line problem and ford=2, under certain ap- anqwill be crucial for obtaining the solution of the probiem.

proximations obtained an analytical solution to first order in Substituting Eq(2.8) in Eq. (2.5) for h,, the variational
g (the strength of the disorderHere we would like to con- 5 miltonian becomes n

sider the whole range of disorder for largeand also inves-

tigate the limitu— 0. Our goal is also to make contact with L N

the calculation of EM. Hence we will start with a somewhat hnzf du,

simpler approach with a finite number of variational param- 0 a=1

eters in lieu of the infinite number of such parameters intro- 1 L L

duced in our previous work. As will turn out this is appro- + 2 pabj duJ du’R,(u)-Ry(u’),

priate for the current problem and allows us to solve 2L @ 0 0

everything analytically without any further approximations. (2.12)
EM considered only the case pf=0 and chose

L
du, dap(u)=0. (2.10

0 b

M (&Ra(u)
21 ou

[ +3%
+§R3(U)

with
N _OM :
Jap(U—U ):_Téabé(u_u ), (2.7) Ai—\ —s —s

whereq is a single variational parametdin an appendix Pab= ’ ' . (212

they considered a slightly more general form but it is still : —-Ss

proportional tos(u—u’).] Here we claim that we need to —s -s A=A\

introduce static -independent off-diagonal elements for

Jap @nd also add a static diagonal part. This will help capturevhich reduces to the EM variational Hamiltonianpif,=0

the correct physics of the problem as in the case of the quani.e., if A=\ and s=0). For now we consider a replica

tum spin glass systems mentioned above. Thus we chose symmetric parametrization. We will discuss a possible rep-
lica symmetry breaking parametrization later on. Using this

Qan(U—U") == [ (N—p)d(u—u")+ (N1 —=N)/L] parametrization oh,, our task is to calculate the free energy
+(1— 84p)S/L, (2.9 from Eq. (2.6). This is aqhieved by first writing down the

propagator associated wifph,, :

and we have three variational parameters\4, ands. The -
variables\,\; represent two values of(w#0) and A (w Gan(@)={B[(Mo’+u)1-q(o) ]}z (213
=0) instead of the general functiof{ ) introduced in Ref. )
[6] (which involves an infinity of variational parametgrs With
The variables represents a “spin glass” type variable which .
loosely speaking is a measure of “freezing.” ~ _ s
At this point it is important to note that apart from the Gavl ) fo duGap(W)exp(—Tou). (219
u-dependent term, the Hamiltoniad, given in Eq.(2.2) is
invariant the transformation For the functiong,,(u) given by Eq.(2.8) we find
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We now use the formulgsee, e.g., Gradshteyn and Ryzhik

q =—8as[(N =)+ (N1=N) 84 o]+ (1= 84p)S80 0,
Oan(®) abl (N =) +(Ay=N) 6, 0]+ (1~ Oap) &,?15) [14], Eq. (1.445.2]
and thus 1 3 e’ 1 cosfa(l-27/L)]
Gan(©) = B HIM >+ X+ (A=A +8)8,,01- 58, d}ar L Morn o 2yMn sinfe)
(2.16
L /X
which gives after inverting amXn matrix and taking the a=>Nm OszsL (2.23
limit n—0,
Ai+2s to calculate the correlation function and the free energy in
BGapn(w=0)= 5 Oant 5 (1= 6ap), the limit n—0: For the correlation function we obtain
(A1 t59) (N1 +59)
(2.17 1
C(/)=
(2.18 (4) BVYMN\
BGp(w#0)= ————8,p- 2.1
Mo?+\ L /N cosHL\NM(1—2//L)/2]
X | cothz\/—— -
Since the interval on whichu is defined is finite (6<u 2 VM sinh(LY\/M/2)
<L), the “frequencies”’w are discrete and satisfy
(2.29
wm:Tm’ m=0+1+2 ... (2.19 and for the free energy
- +
We can now use the fact that @:consﬁ-(ﬂ M cothE\/z+ Lol Ait2s — 1
Ld 4MN 2 VM 2L\ (\;+s)2 A
d A ,
(Ra(W)-Ry(u"))=dgap(u—u") = 2 e ("G, (w), 1L o1 1o
w + —Insinh = +—In 1+ +—In—
(2.20 L 2 2L
to obtain an expression for the correlation function of interest 1 K2
and for the free energy. For the correlation function we ob- 2L\, +s_ (2m) SalexA—kTay)
tain
1 —exp(—k?ap)], (2.29
C(/)=GU[R()=RO)I*))r _
with
n
:i 2 ([Ra(/)—R (O)]2> 1 L /N coshHLyA/M(1-22/L)/2]
nd&=p & 2 a;= coths \/~—— : ,
2BVM\ 2 VM sinh(L\/M/2)

2 < .
=0 2, 2 Gadl@)(1-e)
a=1l o

2 1—-e '/

=— _ 2.2
BL 570 M w2+ 2\ (221

For the free energy we find from E¢R.6)

@zconswg(u—h)g > Gaal(w)
a=1l o

1 1
5 % PanGan(@=0)— 28 ; trin G(w)

Bgl-f f(Zw)d
x% ex

o g [Gaa(®) + Gpp(w)

—Zei‘”ZGab(w)]) . (2.22

(2.26

_1( 1 1)+ 1 thL\/Y
TR PR} Py N VN AV
(2.27)

Some of the details of the calculation are given in the Ap-
pendix. The constant term does not depend on the variational
parameters. So far the calculation has been exact but now we
are interested in the lardelimit. Before we proceed it will

be instructive to pause to review the calculation of EM who
have chosep=0, i.e.,s=0 and\;=\ (recall that in their
notation\=q?). They also takeu=0. In that case the free
energy simplifies to give

B(F) A hL\/TJrll 'hL\F
W_ConSt_z]_\/WCOI E M E nsin E M
,32gfu2 f

—exp(—k*ay)],

~[exp(— k?a,)

(2.28
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with a; still given by Eq.(2.26) and
' 2'69 exp( gzkz)
L \/Y (2m)°
a2= 2,3\/_ coths V- (2.29 ><{[1—exp(—r)—rexr(—r)]exp(—kzal)
—exp(—k?ay)}, (2.35

We also noticed that sincg; is symmetric about the point

z=L/2 we have limited the integration up td_/2 and mul-

tiplied the integral by 2. We can now take the limit of large and thez variable has been rescaled by 7M/\. Thek
L. It is at the pointz=L/2 that the integrand vanishes for integration can now be done to yield

largeL. In this limit we find (upon dropping the constant

d/2+2p\pd/4+1
B(H_}\F ﬂgJ J (L 29FTTMTT - 4)/4J dr
Ld 4 (27)d (27T)d/2
—K?a.)— — K2 l-e "—7e 7
X[exp —k“a;)—exp—k“a,)], (2.30 % _ . (2.3
(1_e—T+A)d/2+l (1+A)d/2+1
with
with A= ¢£2d3M\/2. At this point we see that the integral
a;= [1 exp(—zyAM)], a,= ) is finite for d<4 even in the limitA—O0 (which follows
2pVM ZBVM)EZ a1 from £é—0). Let us denote the integral in this limit By:
Notice that the factor of 2 in front of the integral due to the o 1 e 7
aforementioned symmetry was missed in R&f. This is of Id—f dr — —1 L
no importance since it just renormalizes the strength of the 0 (1-e™) (1-e™)

disorder. The integral oved can now be done to yield (2.37

B(F) E\ﬁ_ﬂ_zg BVMA dlzf“ dz so, Eq.(2.36 becomes
Ld 4VM d 2 0
1 29,8dl2+2M d/4+1
X -1|. (23 = | \@A (2.38
[1—exp( —z N M)]%2 ] (232 2m¥z

At this point we realize that the integral is infrared diver- , i . i
gent for any dimensiod=2. We can trace this back to the  Unfortunately EM did not realize that this integral is
short distance singularity of the Dirac delta function correla-"€gativefor d=3 (and alsod=2). The indefinite integral
tion. We thus replace the delta function by a regularlzeoCan be carried out analyticallg.g., USINGUATHEMATICA ) in

form: d=3 to give
1 R?
5(d)(R)—>—exp< - —) (2.33 __ E —_ 1 T
(wdg?)¥2 1 ag? T e T e e
whereé is small(we can think of it as the intrinsic diameter 1+ Vi—e~
of the polymer thread Using the representation given by Eq. + 3 1 W
(2.4) for the right-hand side and carrying out thidéntegra-
tion yields
2 I3=1lim| liml(7)= 21 In2 0.20457
@ZE\/X_'B_ _ggzkz S—T[Tl (T)—TILTL(T)__g( —In2)~-0. :
Ld 4 2q7)d
( (2.39
X [exp(—k2a,) —exp( —k?a,)], (2.34

[In d=2, one hasl,(7)=7/(e"-1), andl,=—1.] From
and the integrals are now properly regularized to yield &here it follows that Eq(2.38 has no solution foi. This is
finite expression. To find the optimum variational parametera very important observation. Notice that all fractional pow-
N\, we take the derivative of the above expression with reers of\ are always to be taken as positive. For example, in
spect toy\: the integral
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dk dk — uNy—3us+3s\+ 257+ \?
j de exq_kzaz):f dk2 Mg M 1 1
(2m) (2m) 2L(A;+5)°
1 da,\ B%g (L dk
X expg —k2 =|— —f dzf k? exp( —k?a,),
p( 28 MX any) 2d Jo 2 (ga® SR
d JMN) 2+ (249
= s (2BVMM) TS,
d+1,_dP2
2 s E—ZQJLdZJ dk k? exp( —k%ay)
(240  2L(\,+5)3 2d Jo ) (2m) 2
(2.45
which is part of the result derived abowé in the integrand i
is positive, and so must be the result of the integration sinc&Nce
the integrand is positive definite. There is no way to argue
14 i da, Ja,
that A can be taken as the negative square roo{Xof To e rry =0, (2.49
elucidate further the fact that there is no valuexofvhich 1 S

extremize the variational free energy we return to 34 e find that upon adding the two equations we get
of the free energy and carry out tkeintegration to find for

d=3 Ni—u+s
Lz:o’ (2.47
B(F) 1\/? gB72M B4 o0 2L(A1+s)
TR Wﬁ) dr which implies
_ 32 32/ This is an important general result. Substituting this result in
[1+A=exp(=)] (1+4) Eq. (2.44 we find
(2.41
_ ’B_gL dk k2 _ k2 — ﬂ
with A= ¢2d8M\/2. Again the integral can be done ana- S= d (2)d exp( az)= (47a,)¥2+t’
lytically (MATHEMATICA ) and we find (2.49

B(F) 1 \F gB72M 54\ 14 with
3L 4VM  32m*? 1(1 1) 1 L\F
a,=—|———|+————coth= —, 2.5
2 BLin N T2gyMn T 2 VM (250

which gives a relation betweesand\. However as we will
see in a moment, only the combinatian+s= w, enters in
the equation fol .

Returning to Eq(2.25 we see that upon taking the de-

rivative with respect to/\ the only dependence aand\
oM 1 \F pect to/A y dep 1
M

x( —2(1—|n2)+%+0(ﬂ)), (2.42

substituting forA one obtains

BF) _

__ - is through the combinatioR;+s in a,. It is simpler to take
3L (3m)%¥%¢ 4

the limit of largeL and to write up the resulting equation for
\ up to exponentially small terms i

29B7/2M 5/4)\ 1/4
+(1-In2)—————>—+0(§). (243 4()\—,“)\/M
3(2m) N—p=———
L N
We see that the divergent terfas {—0) is independent of 289  [M (2w dk
N. We also see that the free energy is a monotonically in- +T\/;f de dk2
creasing function ok and thus has no extrema as a function 0 (27)
of it. Derivative of the last expression with respect {a X {exp( —k2ay)[1—exp(— 7)— rexp(— 7)]
agrees with our previous result. Thus we see that the one
parameter variational Hamiltonian does not yield a meaning- —exp( —k?%a,)(1—4yM/N/L)}, (2.5)
ful result.
Let us now return to the more general expression for th&Vith
variational free energy given in E@2.25. Before we con- l—e " 1 1 1

sider the largé. limit we can draw a general conclusion. Let a,= a,= + _ _
us calculate the derivative of the fee energy with respect to 2BYMN\’ 28 yMNx  BLu  BLA
N\, ands: (2.52
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If u is finite, one can proceed with expanding exgfa,) in
powers of 1L as will be done later. However, if one attempts
to take the limitu— 0 we see immediately a potential prob-
lem because of the term Bl w) in a,. If we carry out the

k integration we find

2+ 2 g did+ 1
2gBYe T MYt (L/z)\/Wd

)\d/4J
0

l-e "—7e "7

(1_ eT)d/2+1

A—p T

(27T)d/2

X

1
2\/M7\—M diz+1 |
_ TT

L

1+

(2.53

where we have omitted subleading terms ih.1As u—0
for fixed largelL, the last term in the integral vanishémss

N\ — u remains finite fog#0). The integral over no longer
converges for largd., but is rather proportional td. To
leading order we getby subtracting and adding 1 to the
integrand

di2+ 2 g d/a+1/2
M L
_98 S A(@+2)4 (2.54
r
which gives
4/(2—d)
gﬂd/2+ 2M d/a+ 1/2L
)\=< (22 . (2.59

We see that the borderline dimension appears talbe.
Indeed from Eq(2.24) it follows that for largeL

C(/)~ [1 exp(—Z/JNIM)], (2.56
BYM
and thus the radius of gyration satisfies
R~A—1/4~(g|_)—1/(2—d)’ (257)

which agrees perfectly with Eq1.6) for d<2. To see what
happens ford>2 we can easily show that in the limit
—0 the free energy becomes of the form

ﬁ_ﬁ(ﬁr)d/2(f<L/2)»T i
M

1
><[1+A—exp(—7)]d’2’ (258

1

4

B(F)
Ld

where again we regularized with = £2dBJM\/2. This
gives

BYMN

2

B%g

Jrsa

2d

B(F) 1
W = COHSH'Z

d/2
) L, (2.59
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and when using.~d?B8~2M ~ 1R * we obtain
2 L dd/ZBZg L2
B(F)=consx L+ M 2 2(2m 2 =k (2.60

which coincides with Eq(1.4) and shows that fod>2, F
——o asR—0 and there is always collapse. Thus we see
that in the limit of u— 0 we recover the annealed result from
the replica calculation as expected.

If on the other handu is finite, we can expand
exp(—k?a,) in powers of 1L and we find to leading order

in L:
2,89\/\ p( 1-e "
k2
f (27r)8 28MXx
k2
x[l—exq—r)—rexp(—r)]—exp(—ZB\/M_)\
4[%9[[ p(_ K2
277)" 28VMN
g __3) dk p(_ k2
d( f(zw)dk & 2B8YMN )’
(2.61)

The last two terms are also(D) although they originated
from seemingly 1. terms, since we obtain a factor loffrom
the range of integration over. Evaluating the integrals we
find

d+2

ZgBd/2+ 2M dia+1
(2’7T)d/2

A
o

lq+2+ A9,

AN—up=
(2.62

For smallg we can solve this equation in powers gfDe-
fining a dimensionless constant

Q(BZM )(d+4)/4ﬂ(d—4)/4

= , (2.63
g (27T)d/2
we cast the Eq(2.62 in the form
~ - 2+d
h=1+02| 14+ ——+——h ha/4, (2.69

with h=\/u. To second order iy we find

Mu=1+2(14+2)g+ (Ig+2)[d(I4+2)+2(d+2)]g?
(2.65

Thus asg increases from O\ is an increasing function af
starting from an initial value ofx. However, a numerical
solution of Eq.(2.62 (for d=3) reveals that the solution
becomes ill behaved asbecomes of magnitude 2. This

happens fog~ 127413+ 2)]. The reason for this is as will

R
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become evident in the next section is that the replica sym- L o
metric solution becomes invalid at this point and has to be M®) —u=—s— 259f dz(1-e'“?)f'(2ay(2)), w#0,
replaced by a replica symmetry breaking solution. This will 0 2.70
become clear in the next section where we will find the cor- '

rect solution for larger values @. It is also clear from Eq. \ith

(2.63 that for fixedg asu— 0, g becomes large and we will

be in the region when RSB is to be used. Thus the range of ,

applicability of the repli tric solution is minimal f 1 1-e '™

pplicability of the replica symmetric solution is minimal for _ L

a small value ofu. 2,(2)= BL &Fo Mw?+ \ (o)’
The rest of the section can be skipped on first reading of

the paper and the interested reader might continue directly to

the next section discussing the RSB solution. For complete- 1 1 1

ness we display here the form BEQ.61) takes for a general a,=

(2.71)

(2.72

correlation of the disorder defined in Ed..14). We can use
the representation given in E.4) to obtain

M 0
)\—,u=—4ﬂg\/;fo dr
X[1—exp(—7)—rexp(—7)]—f’
M.

4 1 L 'f//
+49 ;—X

1-e 7

BYMN

'f/

1

BIMN

1
BYMN

1

BYMN

: (2.66

where we defined

dk
(2m)¢

2
%(a)EJ’ dyf(yZ/d)f exq—ik-y)ex;{—%)

2xa

1 ©
12— 14— X
)Jo dx X2~ te *f (2.67

I'(d/2

and the primes stand for derivatives fofwhich can be ob-
tained from the first line of Eq(2.67) by taking the deriva-
tive with respect taa under the integral sign.

At this point we would like to discuss the more complete

variational scheme that we used in R¢9] and show that
all our conclusions concerning the limit— 0 follows from

b ——.
BrL  BL $Fo Mw?+ N\ (o)

For a regularized delta function correlation we have

- 1 1
f (a): N 2(27T)d/2 (d§2/2+a)d/2+1'

(2.73

In the limit u—0, we observe thas—0, and there is no
longer a cancellation of the contributions linealifetween
the two terms on the right-hand side of Eg.70. Instead
we get

1

Mw)=—2pgLf AL (g&)o Y

, (279

which yields anw- independent solution that for the delta
correlation becomes

L
ﬁg dlz(ﬂ\/W)dIZJrl.

A=
(2m)

(2.79

This result exactly coincides with E§2.54) derived previ-
ously.
Ill. REPLICA SYMMETRY BREAKING

In the previous section we have seen that the replica sym-
metric solution becomes invalid for fixed amount of disorder

that scheme as well. Since the notation there was differe{., 4 small harmonic constapt. In this section we show the
we will translate the equations to the present notation but wemergence of a different solution of the variational equation
will not rederive them here. What we did there was to con,ich is more adequate for our problem. But in order to take
sider a variational scheme in which we allowed the Va”abl%dvantage of such a solution we must use a more general

\ to depend orw and we extremized the free energy with

respect to each variabl w). The propagato6(w) defined
in Eq. (2.16) now becomes

Gap(w) =B (Mw?+\(0)
+[N1—N(0)+5]8,,011— S8, 0)ap - (2.68

We have found that the relation, +s= u still holds ands
and\ (w) satisfy the equations

s=—2BgL¥ (2a,), (2.69

variational scheme. Returning to Eq2.8—(2.12), we have
extended the parametrization of the maipiy, in Eq. (2.12
to allow for one-step RSB by having two off-diagonal pa-
rameterss, (x<x;) ands; (x>x.) together with a break-
ing point X, (0=x.<1). Herex is Parisi’s replica index.
For details of Parisi's RSB scheme see reviews of spin glass
theory[15—17. Thus our variational scheme includes now
five parameters. A one step breaking is sufficient for the case
of short range correlations of the random poter{ifal g].

We were able to calculate analytically the free energy
with the new parameters. Here we display the final result, the
details given in the Appendix:
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B(F) (M \) L LK
—_—= coth— —
Ld — a/Mx 2 Tl s
1) 1 So 1
+l1-=— + -
Xe) MitSp (Ag+s5,-3)%2 A
| L\/7 | -3\ 1
nsinh E M —n )\1 Z
x| 1 Inl 1 > L )\1
M TN s T

X exp( — k2ay)]. (3.
We introduced the notation
2 =Xc(S1-So), (3.2

the variablea, is still given by Eq.(2.26), and we defined

B 1)1 1 w1 1 1 1
aZI_ﬁ X_C)\l+sl_2 _X_C )\1+Sl_x
! thL\/> (3.3
coth= , )
2B JM\ 2 VM
1 1 1 h_\/? s
aZb—ﬁ —)\1+sl_f 2BV _cot IE (3.9

From the free energy we are able to get the following five

relations(everywhere we eliminates, in favor of %)

)\1+SO_(1_1/XC)E:/.L, (35)

which replaces the relation; +s= u established above for

the replica symmetric solution,

2 k? exp(—k2ay), (3.6)

3= PR azp) — exp(— K?az)],

3.7
RN PR Bl 2
JTRDY In(1+M - M(M“‘E)J 27'r)d

2 dk

X exp( —k2ay) + %(Lxc)zj 2

X [exp( —k?ay) —exp( —k%a,)],
(3.8
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Zﬁg\/>J'(|_/2)ﬁ_ dk 2
(27T)d

x {exp(—k2a,)[1—exp(— 7)— rexp(— 7)]

X[ =X exp( —k?az) = (1 Xc)exp —k*ag,)]

X (1—4\M/N/L)}, (3.9
where we defined
l1-e 7 (3.10
a;= .
PN
= _ 1 + ! (3.11
AT My BN BL(ut3) '
1 1 1 1 1 1 1 )
p=—"—+-——+-——|———.
2BVMA BLN  BuLx. B(pu+2)\L Lxc
(3.12

We have simplified some expressions assuming larged
dropped a term of order [L/in Eq. (3.9).

If we denote byy.=Lx. we realize that equation8.7)
and(3.8) can be solved fok andy. of O(1) with respect to
L. These equations are similar for those of a classical particle
in a random potentidl18], except for the variabla which
does not appear ther@One can recover the equations for the
classical particle by taking the limi — o with L fixed. One
needs to replac@L with B for a particle. This limit is not
meaningful for a polymey.For small u we can have an
approximate analytical solution:

\/— (,3\/_ d/4+1\/||n_

(2 )d/4 313

chLxczé\/g@w)d"‘(ﬁM)Wllnul, (3.14

Sp=const

X g2~ DMABL(BYMN) A+, 42 1y ((d+2)/4,
(3.15

An analysis of the equationgxpanding in power series in
3,) shows that this solution is valid as long as the condition

2/(4+d)

J’_
d) PGB

2+d d/2

2BJ_ (3.1

is satisfied. This inequality can also be expressed in the form

(d+4)/4
=1, (3.19

g(d+2) ;

whereg has been defined in E42.63. When the equality
holds we have, =0 andx.=(4+d)MX/(2xL). This can
also be verified by using this condition at the equality point
in the above solutions fa¥, andx, and we see that indeed
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3 ~0O(u), andx.~+MA/(uL). Solving the equality condi- 2gBY/2+ 2\ a4+
tion given by Eq.(3.17) together with Eq(2.64) gives A“‘““zW
a

= \/4+2|d = x| +2+&\ﬁ+d+—2 Ay
h=1+ W%].BS for d=3, (3.18 d 2 M 2 S .

(3.23
g~[(d+2)h@ ") 71~0.068 for d=3 (3.19 Substituting forS andy, we find
in agreement with our numerical solution of E8.17 which N 29,3d/2+2Md/4+1[I . 2—d
broke down forh=2 ford=3. So the point when the replica B (277)972 { d 2
symmetric solution has to be replaced by the RSB solution is
{:J;\t/ek()jelow the point that the RS solution becomes ill be- N \/d/4(277)1/4dﬁf(4+d)/4M7(4+d)/8)\(47d)/8
If on the other hang. is small but fixed we can use the Vg
solution we have obtained above in the equationfoin the d+2
limit of large L. We obtain XVInu|| 1+ ——]|. (3.29
din g
289 M (= dk Let us seek a solution of the form
N—p=——r —f dq-f k{exd —k2ag(1—e )]
d NJo (2r)¢ \ = CB4=d)( g2\ ) (4+ D/ (4-d)gai(4—d) (3.25
X[1—exp(—7)— Texp — 7)]—exp —k%ao)} Substituting in Eq(3.24 we obtain a quadratic equation for
C and to leading order gg—0 we find
_ Bgyc dk k2
d (2m)9 g4/(4—d)
(2N (@+d)(4a—d) 4/(4~d)
xiexp —k?l agt ————<| | —exp(—k?a ] (3.26)
p[ ot Byeuiprs)| | ORI

Using this result inside the parentheses in 8324 we see
that we getl 4+ 2+ 3d|In u|. This shows that we were justi-
fied a posterioriin neglecting the constant terms. It also
shows that the negative constdgtof EM [see Eq.(2.38]

4Bg M dk
+T\gf(2 )dkzexr(—kzao)

o

g/l 1 1 dk ) has been replaced by the tefm|In w|. From this final result
t4a PES Y f (27T)dk exp—k°ap), (3.20 e obtain the radius of gyration
(d-2)/2 —U(4-d)
where we defined R~(B?MN/d?) ™= ( (277)"’2B4M ?g |In |
4dd2 —1/(4-d)
(Zﬂ)d/2b4
We can check that foE =0 it reduces to the replica sym-  This is the main result of the paper. It recovers the EM
metric equation. Carrying out the integrals we get result but with their constarity being replaced by 2 I\ as
has been argued by Cates and Bal. Note that we have
2gpY22M A+ y N replacedM in favor of the bond step.
N—p= lg+2+ _C\/7 Substituting the resuli3.26) obtained forA in Egs.(3.13
(2m)%? 2 VM and(3.14 we find
( 25\M\ dml} d 41(4—d)
X1=|1+ ————— _ (d+4)/2p 1 (d+4)/4
yCIu’(Iu'+2) E_((ZW)dlng M ||n,LL|) y
d+2 N —u—3 \dd - (3.28
2wty ’ .22 gi-2 —1/(4—d)
Ye=Lx.= ( (2m)8 923d+4Md| In Mld_z
and we have to substitute far andy,. (which are functions (3.29

of \) from Egs.(3.13 and (3.14), respectively. If we now
consider the case of strong disorder we can neglegctla- The second equation is important singecan not exceed 1
tive to A and2 and the above equation simplifies to give (Parisi's variablex must satisfy 8sx<1 [15]). For 2<d
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<4 we see thax. actually decreases whenbecomes small ACKNOWLEDGMENTS
so there is no problem. Also faf=2 there is no problem

since for large enough, x. is also within range. On the  yis. ission as well as for pointing out REE]. This work was

other hand wherl<2, X, increases whep becomes small supported by a arant from the U.S. Department of Ener
(or equivalentlyV becomes largeand eventually will exceed CoFr)Eract NoyDEg-]GOZ-QSER 45686, P 9,
1. For example fod=1 we see that this happens fiom u| ' '

~g?L3, which corresponds to an extremely large volume
V' ~exp@3L®) whenlL is large. Forv>V’ we revert to the APPENDIX
annealed result, which fad<2 predictR~(Lg)¥“~2 as

I would like to thank Yohannes Shiferaw for a useful

h o the last tion. In the laradimit thi : Here we give some of the intermediate steps leading to
was shown in the last section. In the lafgémit this again - g4q (2 6) and (2.22. To evaluate the expectation value of

leads to a fully collapsed polymer. o ;
the last term inH,, it is most useful to write
We have also verified that to leading order the free energy n

is given by Eq(1.10 (there is a subleading term of the form

Lg/R92 that can be neglectgdlt is interesting that the (expik[Ra(u) —Ry(u") Dn,

conditionx,<1 that we have applied above has a physical L
significance 2]. The attractive term in the free energy e = J DR;---DR, eXF{ > f dvV (V) Rg(V)
Eq.(1.10] of the form— L \/g In V/R®. This representéup to c Jo

a sign the binding energy of the chain. In order that the 1 L L
polymer will be confined to a small single region of sRas - dvf dv'RC(v)gcdl(v—v’)Rd(v’))
c 0 0

given above in Eq(3.27), the binding energy should not
exceed the translational entropylin V. The condition 1 . .
X jDR1-~DRnexp(——2 f va dv’
2% Jo 0
1

InV<L+ygIn V/RY (3.30
X Rc<v)gcd1(v—v'>Rd<v'>)
is equivalent(up to some irrelevant constapt® the condi- 1
tion x.<1 as can be verified by using the res@127) in Eq. _exr{i E J va dv'VC(v)gcd(V_V')Vd(V’))
(3-3@- cd

1
=exp( - Ekz[gaa(o)+gbb(o)_29ab(u_u’)])a

(A1)

IV. CONCLUSIONS

We have considered the problem of a polyneiGauss-
ian chain in a quenched disordered medium. The problem h
maps also to a quantum particle in a random potential, and iy/nere
the presence of an additional confining harmonic fofae
spring constanj) it maps also to the problem of a flux line Ve(v)=ik[ 5 ad(V—U) =& po(v—U')].  (A2)
in a cage potential and random columnar disorder. We car-
ried out a replica calculation in the presence of a confiningNext we show how to evaluate other contribution to the free
harmonic force, and succeeded to “improve” the previousenergy:
results of EM[1], in the sense that th@nphysical constant
is replaced by IW in the equation for the variational param- 1
eter A and hence also in the dependence of the radius of E BGa(w)= E
gyration on the strength of the disorder. Of course our cal- « 070 Mw?+ N (\y+5)?
culation does not diminish the accomplishments of EM who
pioneered the use of the variational method in the context of coth— L \/E_ EJF Ai+2s
the replica calculation and for the first time obtained the 2\/_ N (N +S)?
correct scaling exponent for the dependence of the radius of
gyration on the disorder for finite systems. In the infinite (A3)
volume limit the chain collapses since it can find a very deep
potential minimum somewhere which can accommodate itAlSO
For 2<d=4 the chain idocalizedin the sens¢2] that even
in the largeV limit two long chains introduced into the sys- 1
tem will find the same small neighborhood to occupsth a ~on 4 2 PabBGap(@=0)=—5-TrpG(0)
probability approaching 1 for largé). This is a conse-
quence of the off diagonal spin-glass order. parameter we AN +25) 1
introduced that measures overlap between different replicas. = a2 o (A4)
It is comforting to find out that the replica calculation can 2(Ay+s)
reproduce all the physical arguments introduced so cleverly
by CB[2]. and

N1+2s
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- % % trin ,[)’G(w)=% ; trin[ 871G X w)]

n n
— 2 N
5 Ew IN(Mw~+X\) 2In)\

+ EtrIn[B*lel(O)] (A5)
5 ,

but

E2| Maw2+N\)=nl 2'h5\ﬁ
an(w )=nlIn sm2 WV

[see, e.g., Ref.l4], p. 44, Eq.(1.431.2]. The constant term
(which is infinite is eliminated by the normalization of the
functional integral, and in any case does not depend on
Also

+nconst (A6)

N —S -S
—S )\1
trin(B G 1(0))=trIn __|=ninx,
-s -S M\
tnin( 14 > +o(n?
nin N n)\l+s o(n%).
(A7)

For the case of one-step RSB we have to calculate the

propagator by inverting Parisi type matrices. It is helpful to
use formulas found in an appendix of REE2]. We find

1 1
'BGaa(w:O):Xc(M‘*'Sl_E)+<1_X_c))\1"'51
So
+ ) A8
(N+51—32)2 A8
BG(w=0x) %0 < (A9)
=0X)=————, X<Xc,
N (A1+s—3)2
B _ 1 1 1
'BG(m_O'X)_Xc()\l"‘Sl_E)_X_c)\l"‘sl
b e
(\p+s,-3)?
(A10)
1
BGap(w#0)= INPEIEN Oab (A11)

wherex is Parisi’s index on the intervaD,1].
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1
ﬁ ; % BGaa(w)

1 1
= _— — G =0),
o Mo+ n;%ﬂ aa(w )
(A12)
1
o % PabBGan(w=0)
_ 1 B A _ 1
—— 5-TrpG(0)= 5 Gas(0=0) =3,
(A13)

and finally
! > trin BG
Zn = trin BG(w)

% 2 (576 )] % 2 In(Mo?+))

1I 1 InfB8-1G~10)]=I (2 i L\/Y
=S+ o trin[B (0)]=In{ 2 sinhy\/{+

TR ST P et B PP
Pl L s v ) E
xIn| 1 L% L constr
n S §A1+Sl—2 constto(n).

(A14)

The coefficienta; in the exponential is given as before by

aﬁl > Gaa(w)(1-€'), (A15)
L w#0

anda, becomes
1 1
2,(X) = [Gaa(0=0) = G(0=0X)]+ - 2 Gag()
w#0

:a2| y X< XC (A16)

=ag,, X>X, (A17)

and the explicit expressions fay, a, anda,, are given in
Egs.(2.26), (3.3), and(3.4), respectively. Notice also that

= > exd —kZa(x)]= — Jldxexq—kzaz(x)]
N a%b 0

=—Xc exq—kzam)—(l—xc)

Next we show how various other contribution to the free

energy become in the RSB case:

X exp( —k?ayyp). (A18)
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